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It is time to reconsider direct drive for HIF 

With modern, mainly/all-DT, direct drive capsules and efficient 
heavy-ion beam coupling, ~1MJ drive may suffice for 

gains>100 (~200 with shock ignition)


⇒ Pursuit of direct drive allows HIF to take advantage of ongoing progress in 
modern laser direct drive  ICF as it did for indirect drive a decade ago


• 
Emerging work on HI direct drive with tuned 
ion ranges indicates potential for high beam-
target coupling efficiencies and high gain


• 
Adiabat shaping + SSD beam smoothing 
makes laser direct drive viable for NIF and 
laser IFE (FTF, HAPL, HiPER….). NIF polar-
direct-drive will test geometries suitable for 
liquid protected chambers


• 
HI direct drive capsule radii >2mm allows 
large beam spots


• 
Neutralized drift compression allows 
multiple pulses of lower ion ranges
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The required fusion gains for advanced targets are 
determined by power plant economics 

•  Select req’d net electric output, Pe,net 
•  Specify driver efficiency ηδ, thermal cycle efficiency ηth,  
•  ⇒ Determine required target gain G for a given driver energy Edriver 
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Heavy ion direct drive promises high drive efficiencies  
(⇒high gain!) with very robust capsules 
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A unique advantage of HI direct drive:  We can tune the ion deposition 
range in the target to optimize the ablation drive 

Unique features of heavy ion direct drive to maximize drive efficiency:   
 1. Passive approach: Ion beam heating causes electron thermal speed to go 

above ion velocity ==>  range lengthens, and ion beam can stay close to 
ablation front, under special circumstances 


2. Active approach: Ramping ion beam energy over the course of the pulse, 
will also increase range.


Fuel


Initial ion range


Fuel


Ion beam


Ablation front


Ion beam initially heats ablator


Ablation front decouples from

location where energy is deposited

=> Potential low drive efficiency


Later in time:


Blow-off 
plasma


v ~ cs


Ablator


Ablator




3.2 2.4 1.9 In-flight adiabat α 

31 30 35  Convergence ratio 

 25 27 25 In-flight aspect ratio 

0.88 / .09 0.91 / 0.10 0.97 / 0.10 ηabsorbed / η 

20.8 / 47 21.6 / 60 24.7 /  77 Yield (MJ) / Gain 

3.0 2.1 1.8 mablator/mfuel 
0.44 0.36 0.32 Driver energy (MJ) 
205 

500MeV 

195 

200MeV 

175 

50MeV 

Peak drive power (TW) 

Objective:  Design a high-gain HI direct target with:  
(a) NIF yield ~20MJ,  (b) EHI driver<<1MJ,  (c) all-DT,  (d) robust capsule 
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John Nuckolls : “This is a real advance! Now, 
how are you going to exploit it? Can you apply 
this high coupling efficiency to reduce drive 
energy to much less than 1 MJ?” 



But, Without Refraction, How Do We Achieve Two-Sided 
Direct Drive with Heavy Ions? 
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Heavy ions don’t refract. But they 
can deposit volumetrically!


⇒ Target shimming and/or radial/
temporal energy control. Is there 
is a solution – and can we find it?


~ same 

rho-R ?
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Jakob Runge, a German Fulbright summer student at LBNL, has developed a 
Mathematica model to explore the question: what minimum number of polar 
angles of annular ring arrays with beams using hollow rotated beam spots 
would be needed to achieve less than 2% non-uniformity of beam deposition?  
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Two-sided “Polar Direct Drive” and “Saturn” targets 
Look promising for NIF direct drive (LLE/Rochester) 

 “Saturn” polar 
direct drive targets 
have been shot on 
Omega and have 
achieved ~80-90% 
of the full 4-Pi 
symmetric yield


F.Marshall, Bull APS 51 106 (2006)


LLE/Rochester’s NIF polar-direct-drive 
(“Saturn”) target:   Gain~17 predicted 
with all 2D sources applied 



Conclusions and recommended further work 

• 
It should be possible to design high gain, HI direct drive 

       targets at <<1MJ with robust performance


• 
All-DT targets are the simplest target designs around


• 
Implosion stability should be good because: 

      (a) high ablation stabilization of outer RT modes,

      (b) no ablator/fuel mix , (c) low Atwood numbers, 

      (d) low inflight aspect ratios (big fat shells)

•  Further gain increases in gain are possible by:

        (a) zooming (b) relaxing IFAR constraints

        (c) adding shock ignition, (d) H ablators


• 
Next steps:

– Produce 1D gain curves from 0.1-2MJ (G~10-100’s??)

– Determine minimum main drive ion energies for smaller targets

– Consider H ablators

– Single-mode 2D stability (is ablative stabilization really good?)

– 2D/3D symmetry (and stability) with two-sided drive
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Initial LASNEX Results Suggest Promise for “Shock-
Ignited” Heavy-Ion Targets at ≥1MJ Drive Energy 
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Heavy-ion drive
 50MeV Ar (z =  +8 accel, +16 drift/focus)

Drive energy
 1.0(main) +0.3(shock) = 1.3MJ


Yield
 199MJ


Gain
 153


Peak velocity
 2.2e7cm/s


Drive efficiency (ηcoupled x ηrocket)
 8.6% (*)


Peak rho-R
 2.25 g.cm-3


*Inefficient as assembling large fuel mass to low velocity;  “conventional” heavy-ion direct drive gives ~15-18%




“Shock Ignition” for high gain NIF targets:  Can we apply the 
principles to heavy ion direct drive? 
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